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LETTER TO THE EDITOR 

On backbends on percolation backbones 
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Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400005, India 

Received 26 March 1986 

Abstract. Just above the percolation concentration, a path on the backbone which leads 
from one side of the lattice to the other is not direct but zigzags through the lattice. 
Backbends are the portions of the zigzags which go backwards. They are important in the 
problem of particle transport in strong external fields, as they act as traps and limit the 
current. The threshold concentration for the proliferation of paths with backbends no 
longer than a given length L is defined as p , ( L ) ,  with the limits pb(0)=pd (directed 
percolation) and pb(w) = pc  (ordinary percolation). The inverse function [( p )  is the smallest 
integer such that, for given p between pc  and pd, there are paths to infinity on which every 
backbend is smaller than [ ( p ) .  This minimal backbend length is computed on a Bethe 
lattice and shown to diverge as ( p  -pC)-'''. It is argued heuristically that on all lattices 
[( p )  is proportional to the correlation length in the limit p + p c .  The chemical lengths of 
minimal backbend paths on the Bethe lattice are calculated. 

Connected paths in a random medium can be characterised in a variety of ways [l]. 
The nature of connections plays a crucial role in determining transport properties in 
the medium. For instance, the chemical length [2-81 of shortest paths (measured along 
the path) between two points is an indicator of the tortuosity of connections, and is 
presumed to determine signal velocities in a particular physical system [8]. 

An alternative characterisation we will discuss below is motivated by the problem 
of particle transport in random media in the presence of a strong external field [9-201. 
In this situation, the shortest paths are not necessarily those on which motion is swiftest. 
This is because typical shortest paths are expected to have arbitrarily long backbends- 
portions of the path which double back in the direction of the field-which can trap 
particles for very long timest. Temporally shorter paths-and these are the ones that 
are eventually effectual in transport if the particles have short-ranged repulsive interac- 
tions-require a different characterisation in terms of the longest backbend on the 
path. This is made clear below. 

For definiteness, we model the network by the infinite percolation cluster [21] on 
a hypercubic lattice from which a fraction (1 - p )  of sites have been removed at random. 
Let 2 be a unit vector in the (1,1,1, .  . . ) direction, normal to two planes D1 and D2 
with equations E xi  = * i d  respectively. Consider paths-self-avoiding walks (SAW) 

whose steps lie on the percolation network-that lead from D, to D2 (see figure 1). 
Along a particular SAW, if R, is the location of the walk after the nth step, then 
r, = ( R ,  - 2) is the displacement along 2. Let the maximal displacement up to and 
including step n be 

M,, = max (r , , , ) .  (1) 
n ' s  n 

t We disregard trapping in dead-end branches as here we want to focus only on the properties of the 
backbone. Branch trapping and its consequences have been studied in references [ 11-13,18-201. 
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Figure 1. Two paths on the percolation backbend. Backbends are indicated by bold lines. 
Path 9, is (chemically) shorter than path P2. However, in strong enough fields, motion 
on g2 is faster than on 9,: it takes much longer to go across the single backbend AB of 
height eight than the series of shorter backbends of height one or  two on path P2. Movement 
on segments like BC or PG is in the direction of the field and the time taken between 
backbends can be neglected compared to backbend traversal times. 

The backward displacement (from maximal) is then 

1, = M ,  - r,. (2) 

On each path 9 from D1 to D2, let L ( 9 )  be the maximum value attained by 1";  it is 
the length of the longest backward excursion, or backbend, on path 9. Figure 1 shows 
two paths 9, and P2, on which the value of L is seven and two, respectively. 

At fixed p,  as the separation of the two planes Dl and D2 increases to infinity, let 
{ be the smallest value of L such that there exist infinitely long paths which connect 
D1 and D2. (Clearly, { depends on the fraction p of occupied sites.) In lattice models 
of the type under discussion, { ( p )  is the smallest integer such that there are infinitely 
long paths satisfying the constraint that every backbend on the path is at most of 

It is helpful to consider familiar limits. Let p c  and P d  denote the critical probabilities 
for ordinary [21] and directed [22] percolation. For p>pd,  directed paths (which do 
not have any backbends) proliferate, so that { ( p )  = 0 in the range P d  < p s 1. At the 
other extreme, for p slightly larger than p c ,  connections are very tortuous and involve 
large backbends. l ( p )  is large and is expected to diverge as p approaches p c ,  as 

length I ( P ) .  

I ( P )  - ( P  -A)-@. (3) 
We will argue that the critical exponent p is the same as the familiar correlation length 
exponent v. However, first we discuss the relevance of backbend length constraints 
in transport phenomena. 

We focus on a particular path Bi of the network and consider the dynamics of a 
single particle constrained to move on 9, in the presence of an external field E2 The 
particle moves by nearest-neighbour jumps, with jumps along ê  being more likely than 
against 2 The field E produces a potential energy which has local minima at the 
bottoms of backbends (sites A and G in figure 1) and local maxima at their tops (sites 
B and F). In a backbend of length 1, the particle must move against the field and 
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traverse an energy barrier El. The mean activation time, q, is [20] 

T I  - exp( El/  kBT) (4) 

where T is the temperature. Denoting the probability of occurrence (per unit length 
of the path Pi) of a backbend of length I by prob(I), and neglecting the transit time 
between backbends (e.g. segments BC or FG) which is small as the flow is in the 
direction of E, an estimate of the mean transit time (per unit length of network) along 
Pi is 

( T )  - prob( 1) eXp( El/  kB T ) .  ( 5 )  
I 

The question of whether (7) diverges or converges for large E is sensitive to estimates 
of prob(l). If Pi is a typical shortest path on the percolation network, then prob(l) 
is expected to decay exponentially for large 1. In that case, (7) diverges if E is large 
enough. 

On the other hand, if the path Pi is chosen such that all backbends on Pi are 
smaller than some fixed L, then (7) is finite. In fact, for large enough fields, ( T )  is 
expected to be smallest (and movement easiest) on paths with the smallest possible 
value of L, namely 5(  p ) .  A more detailed account of transport of interacting particles 
through the full percolation network will be given elsewhere [23]. 

We now calculate 5(  p )  on a Bethe lattice, which is an endlessly branching structure 
with no loops. The conventional percolation problem has been solved on this pseudo- 
lattice [24] and the lengths of shortest paths between distant points have been deter- 
mined as well [7]. 

We consider a Bethe lattice with coordination number 2m and assign arrows to 
the bonds of the undiluted lattice. At every site there are m in-pointing and m 
out-pointing arrows. (Think of an arrow on a bond as representing the component of 
e* along that bond.) On an N-stepped SAW leading away from the origin, 0, let 
s, = 1(-1) if the nth step is taken along (against) the arrow on that bond. Then the 
displacement in the direction of e* after n steps is r, = ( R ,  e*) = X:=l s, and M ,  is the 
maximum displacement up to that point. We wish to determine the number Q N ( L )  
of SAW on the undiluted Bethe lattice which start from 0 and satisfy the constraint 

1, c L n = l , 2  ,..., N. (6) 
On the face of it, the constraint is non-Markovian since M,  depends on the entire 

history of the SAW. However, this issue can be sidestepped if we write Q N (  L )  in terms 
of a transfer matrix which keeps track of not only the step variable s, but also the 
current backbend length 1,. At the ( n  + 1)th step 

L + 1 =  1, - s n + l .  (7) 
There are m - 1 possible options for the SAW if s,+~ = -s, and m options if s,+, = s, 
(except if 1, = L and s,+~ = -1, in which case the step is not allowed). Explicitly, we 
have 

with coupling constant K given by 

K = f In[ m / ( m  - l)]. (9) 
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The number of SAW consistent with the backbend constraint in equation ( 6 )  is then 

where Ao(L) is the largest eigenvalue of T. 
On a randomly diluted Bethe lattice, from which the fraction ( 1  - p )  of the sites 

has been removed, the probability that the endpoint of an N-step SAW is connected 
to 0 is p N + ' .  Since on a Bethe lattice each SAW starting from 0 identifies a distinct 
endpoint, the expected number of sites connected to 0 by paths that satisfy the 
backbend constraint 1, s L is 

(12) 

As N-oo, CN(L) vanishes or diverges depending on whether p <  l/Ao(L) or p >  
l/Ao(L). Thus the critical concentration for the proliferation of paths with backbends 
of length at most L is 

CN ( L )  = P + I  QN ( L )  . 

pb(L) = 1/AO(L) (13)  

which defines the backbend-constrained percolation threshold. If pb is known as a 
function of L, this relation can be implicitly inverted to give l( p ) .  Note that Pb(m) = p c  
and pb(0) = P d  as discussed earlier. 

We now compute A. for the ( 2 ( L + l ) ) x ( 2 ( L + l ) )  transfer matrix T specified in 
equation (8). Two rows have vanishing elements, and so T is effectively 2Lx2L.  
Taking ( a , , .  . . , aL,  b l , .  . . , bL) as a right eigenvector, the following recurrence 
equations can be seen to hold: 

ma, + ma2+ ( m  - l )b,  = Aa, (14a) 

mal+l + ( m  - l)b,  = ha, f o r 2 ~ I s L - 1  (14b) 

( m  - l )al  + mbl-, = Abl f o r 2 ~ 1 s L  (14c) 
( m  - l ) a l  = Ab, ( 1 4 4  

( m  - l)bL = AaL. (14e) 
Using equations (14a)-( 14c), we obtain 

where V and U are 2 x 2 matrices, given by 

l - m  ).  A - m  
U ( A ) = -  

( m  - 1)[1 - ( m / A ) ]  (2m - 1 ) / A  
V ( A ) = -  

(16) 
Let A, be the eigenvalues of V .  Substituting equations (14d) and (14e) into (15), we 
finally obtain the condition 
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where X ,  and X -  are complicated functions of A. To leading order in SA defined as 
1 -[A/(2m - l)], we have 

For low values of L, the largest eigenvalue h,(L)  and thus pb(L) can be found by 
solving equation (17). For the case m = 2, we have pb(0) 'pd = 4 and pb(a?) = p c  = i. 
Further, we find p b (  1) L- 0.414, pb(2) = 0.380, p , ( 3 )  = 0.363, . . . . . In the limit L +  CO, 

which corresponds to pb + p c ,  we find for general m that 

The behaviour of l( p )  against p,  which follows on inverting the dependence of pb( 1 )  
on I ,  is shown in figure 2 for m = 2. Equation (19) implies that the critical exponent 
p has the value i, identical to Y on the Bethe lattice. 

A heuristic argument for the equality of p and v can be given. Consider an 
arbitrary lattice, with p close to p c .  The infinite cluster is expected to be well connected 
on scales greater than 5. We thus expect that 5 S constant x 5 and the remaining 
question is whether 5 can diverge more strongly than 5 as p + p c .  

Imagine applying a renormalisation length scale transformation 9 to the system. 
Since both 5 and 3 are lengths, they are reduced by the same factor f( > 1) on each 
application of 9. Let 9?n reduce 5 to order unity; the effective value o f p  is then close 
to Pb(l), which is far from the critical region around p c .  Near Pb(l), the correlation 
length 6 is of order unity as well, which would have been impossible to achieve if 5 
had diverged more rapidly than 5 as p + p c .  Therefore, l+ constant x 5 as p + p c  and 
p = v. 

A point to be noted is that, although 6 and 6 diverge in the same fashion as p + p c ,  
they vanish at differing values of p : 6 + 0 as p + 1, whereas 5 + 0 as p + pd. While p = 1 

P 

Figure 2. The minimal backbend length t as a function of p for a Bethe lattice with m = 2. 
The values of p where 5 changes from L to L+ 1 are the thresholds pb(L). Near pc  (which 
is f on this lattice) 5 diverges as ( p  -pc) -"* .  
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is a stable fixed point of a customary renormalisation group, the directed percolation 
concentration emerges as a special point (e.g. in the shortest paths problem) only if 
the evolution of the full probability distribution of lengths is followed under renormali- 
sation [25]. 

Finally, we turn to the calculation of the chemical lengths of paths satisfying the 
backbend constraint on the Bethe lattice. Define 

where rN is the displacement and N is the number of steps on a path with backbend 
lengths =s L. (The analogous quantity evaluated on a shortest path is the wetting velocity 
[4].) Consider 

where h is a field which couples to rn = Z, sn,  and note that 

i a  
v L =  lim --lnZ,(L,h). 

N-m N ah 

The exponential term in equation (21) can be absorbed into the transfer matrix T and 
ho(L, h) can be determined as above. We find that uL-m/ [ (m- l )L]  for large L. 
Combining this with equation (19) we obtain 

for the chemical lengths of minimal backbend length constrained paths. For the shortest 
paths, the wetting velocity U, has been computed before [7]. Both U, and vi depend 
on the coordination number 2m of the Bethe lattice, but the ratio u i / u ,  is (2/7r), 
independent of the coordination number! 

We thank J Banavar, D Dhar, J Sethna and B S Shastry for helpful discussions. 
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